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Notation

> A: matrix
» a: column vector

> To denote column k of A use ay
> To denote a column of ones use i
> To denote row k of A use aj

> i a vector that contains .



Examples

» For a column vector x = (xi,...,Xn)
= _ 1 n 1
> X = ;Zizlx,-—zlx
> Z;’:lxl? = x'x
n I
> Zi:l Xiyi =Xy
» For n x K matrix X

> The inner product of the it" and j*" columns of matrix X:
X'X]j5 = [xix]

> The K x K matrix X'X is the sum of n K X K matrices formed from a
single row of X:

n
X'X = fox,-
i



MO: A Useful ldempotent Matrix

MO is matrix with all diagonal elements (1 —1/n), and its off-diagonal elements
—1/n:

» Deviations of x from its mean x:

le)_(
X2—)_(
0 1. 1., .
Mx=(1—Zii |x=x— Ziix=x—ix=
n n
Xn — X

» For any constant vector x= (x, ..., x)

M°x =0



MP: A Useful Idempotent Matrix (cont'd)
» MC is idempotent:

M = M° and M°M° = M°

» For a vector x= (xi, ..., X,) the sum of deviations about the mean:

D (i — %) =i [M%] = [M°]'x =0'x =0

i=1

\{

The sum of squared deviations about the mean:

n

Z(x,— — %) =xM%

i=1

\4

The sum of cross products in deviations from the column means:

n

> (i = %)y — 7) =x'MCy

i=1



MP: A Useful Idempotent Matrix (cont'd)

> 2 x 2 VC matrix:

S (i —x)? Sora(xi = X)yi — }7)] _ |:X/MOX
y'M%

|:Zi"1(y,-)_<)(x,- -¥) S —y)

x'M%y
y'M%

» Define n X 2 matrix Z = [x y], then VC matrix can be written as:

xM%  x'MCy x' ,
e o] = L | M x y]=zmz
y Xy y y

|



Introduction

> We looked at finite-sample properties of the OLS estimator and its

associated test statistics (first term)

> These are based on assumptions that are violated very often

> The finite-sample theory breaks down if one of the following three
assumptions is violated:

> the exogeneity of regressors
> the normality of the error term, and
> the linearity of the regression equation
» Asymptotic or large-sample theory provides an alternative approach
retaining only the third assumption

> |t derives an approximation to the distribution of the estimator and its
associated statistics assuming that the sample size is sufficiently large
» Rather than making assumptions on the sample of a given size,

large-sample theory makes assumptions on the stochastic process that
generates the sample



Two Main Concepts of Asymptotic Theory

» The two main concepts in asymptotic theory: consistency and
asymptotic normality
» Some intuition

> Consistency: the more data we get, the closer we get to knowing the truth
(or we eventually know the truth)

> Asymptotic normality: as we get more and more data, averages of random
variables behave like normally distributed random variables.

» The main probability theory tools for establishing

> consistency — Laws of Large Numbers (LLNs)
> asymptotic normality — Central Limit Theorems (CLTs)



Probability Tools for Asymptotic Theory: LLN, CLT

> Laws of Large Numbers (LLNs)
> LLN is a result that states the conditions under which a sample average of
random variables converges to a population expectation.
> LLNs concern conditions under which the sequence of sample mean
converges either in probability or almost surely
> There are many LLN results (eg. Chebychev’'s LLN, Kolmongo-
rov's/Khinchine’s LLN, Markov’s LLN)
» Central Limit Theorems (CLTs)
> CLTs are about the limiting behaviour of the difference between a sample
mean and its expected value
> There are many CLTs (eg. Lindeberg-Levy CLT, Lindeberg-Feller CLT,
Liapounov's CLT)



Modes of Convergence - Convergence in Probability

> A sequence of random variables {x,} converges in probability to a
constant c iff

lim Prob(|x, —c| >¢)=0 foranye >0
n—oo

. . P
Notation: plim x, =c or x,—c¢

> A sequence of K x 1 random vectors {x,} converges in probability to a

constant vector c iff
plim xkn = ¢ forall k=1,... . K

where xx, is the k-th element of x,, ¢ is the k-th element of c

> A sequence of random variables {x,} converges in probability to a random
variable x iff

lim Prob(|x, — x| >¢)=0 foranye >0
n— oo



Modes of Convergence - Almost Sure Convergence

» A sequence of random variables {x,} converges almost surely to a
constant c iff
Prob( lim x, = c) =1
n—o0o

Notation: x, = ¢

> A sequence of K x 1 random vectors {x,} converges almost surely to a

constant vector c iff
a.s.
Xkn —> ¢k forall k=1,....K

> A sequence of random variables {x,} converges almost surely to a random
variable x iff

lim Prob(|x; — x| > ¢ foralli>n)=0 foranye >0
n—o0o



Modes of Convergence - Convergence in r-th Mean

> A sequence of random variables x, converges in r-th mean to a constant ¢
iff
E[|xa]l] < oo and lim E[|Jx,—¢|]=0
n— oo
Notation: x, =™ ¢
» For r =2 it is called Converges in Mean Square and denoted by x, =% ¢

> A sequence of K x 1 random vectors {x,} converges in r-th mean to a
constant vector c iff

Xin —% ¢ forall k=1,...,K

» A sequence of random variables {x,} converges in r-th mean to a random

variable x iff

E[|lxa]] < oo and lim E[|x,—x|"]=0
n—o0



Modes of Convergence - Convergence in Distribution

» A sequence of random variables x, converges in distribution to a random
variable x with CDF F(x) iff

lim | Fa(xn) — F(x) |= 0 at all continuity points of F(x)

where Fp(xp) is the CDF of x,.
Notation: x, —d> X
> If x, LN x, then F(x) is called the limiting distribution of x.

> A sequence of random vectors x, converges in distribution to a random
vector x with (joint) CDF F(x) iff

lim | Fa(xn) — F(x) |=0 at all continuity points of F(x)

n—oo

where Fp(x,) is the CDF of x,.

» Note that for convergence in distribution, unlike the other concepts of
convergence, element-by-element convergence does not necessarily mean

convergence for the vector sequence.



Relation among Modes of Convergence

. m.s, P m.s. P
i) Xp — € = X, —C (so xp — x = xp —> Xx)
. a.s. 14 a.s. 14
i) Xo —> € = X, —>C (so xp = x = xp —> X)

i) x, 2 ¢ = X0 > €
That is, if the limiting random variable is a constant (a trivial random
variable), convergence in distribution is the same as convergence in
probability.



Preservation of Convergence for Continuous Transformation

Suppose a(+) is a vector-valued continuous function that does not depend on n,
then

i) x, 25 ¢ = a(x,) = a(c). Alternatively stated
plim a(x,) = a(plim x,)

i) xp 5 x = a(x,) -2 a(x).



Combinations of Modes of Convergences

i) Xn —25 X, Yo 2 ¢ = xn—&—yni)x—kc.
i) X 25 X, Yo 5 0 = ylx, —> 0.
i) Xn A, x, A, 25 A = A,x, BN Ax,
provided that A, and x, are conformable.
In particular, if x ~ N(0,X), then A,x, < N (0,AXA").

. d _ d _
iv) x, — x, A, LA = XA 'x, -5 XA x,

provided that A, and x, are conformable.

Parts (i) and (iii) are sometimes called Slutzky's Theorem.



The Delta Method

Suppose Xx; is a sequence of K-dimensional random vectors such that
d
Xn =+c and n(x,—c)——z

and suppose that a(-) : R — R" has continuous first derivatives with A(c)
denoting the r x K matrix of first derivatives evaluated at c:

A(c) = 8;£f)
Then
Vnla(xs) — a(c)] - A(c)z
In particular,

V(% —€) -4 N(0,X) = v/n[a(x,) — a(c)] - N (0, A(c)ZA(c))



Khinchine Weak Law of Large Numbers (WLLN)

» If x;, i=1,...,nis arandom (i.i.d.) sample from a distribution with finite
mean E[x;] = p, then
plim X, =
» Extensions:

> Multivariate Extension (sequence of random vectors {x;})
> Relaxation of i.i.d. assumption

> Functions of random variables f(x;)

> Vector valued functions f(x;)



Lindeberg-Levy Central Limit Theorem

If x;, i=1,...,nis arandom (i.i.d.) sample from a distribution with finite
mean E[x;] = u and Var[x;] = ¢°, then

Vi (% — ) = N[O, 0°]

or

2
_ a g
Xn ™~ N[M, 7]

Read < 'approximately distributed as’
CLT also holds for multivariate extension: sequence of random vectors



