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Notation

x

I A: matrix

I a: column vector
I To denote column k of A use ak

I To denote a column of ones use i
I To denote row k of A use a′k

I i: a vector that contains .



Examples

I For a column vector x = (x1, . . . , xn)
I x̄ = 1

n

∑n
i=1 xi = 1

n
i′x

I
∑n

i=1 x
2
i = x′x

I
∑n

i=1 xiyi = x′y

I For n × K matrix X
I The inner product of the i th and j th columns of matrix X:

[X′X]ij = [x′ixj ]

I The K × K matrix X’X is the sum of n K × K matrices formed from a

single row of X:

X′X =
n∑
i

x′ixi



M0: A Useful Idempotent Matrix

M0 is matrix with all diagonal elements (1− 1/n), and its off-diagonal elements

−1/n:

M0 = I− 1

n
ii′

I Deviations of x from its mean x̄ :

M0x =

(
I− 1

n
ii′
)

x = x− 1

n
ii′x = x− ix̄ =


x1 − x̄

x2 − x̄
...

xn − x̄


I For any constant vector x= (x , . . . , x)

M0x = 0



M0: A Useful Idempotent Matrix (cont’d)

I M0 is idempotent:

M0′ = M0 and M0M0 = M0

I For a vector x= (x1, . . . , xn) the sum of deviations about the mean:

n∑
i=1

(xi − x̄) = i′[M0x] = [M0i]′x = 0′x = 0

I The sum of squared deviations about the mean:

n∑
i=1

(xi − x̄)2 = x′M0x

I The sum of cross products in deviations from the column means:

n∑
i=1

(xi − x̄)(yi − ȳ) = x′M0y



M0: A Useful Idempotent Matrix (cont’d)

I 2× 2 VC matrix:[ ∑n
i=1(xi − x̄)2 ∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(yi − x̄)(xi − ȳ)

∑n
i=1(yi − ȳ)2

]
=

[
x′M0x x′M0y

y′M0x y′M0y

]

I Define n × 2 matrix Z = [x y], then VC matrix can be written as:[
x′M0x x′M0y

y′M0x y′M0y

]
=

[
x′

y′

]
M0
[
x y

]
= Z′M0Z



Introduction

I We looked at finite-sample properties of the OLS estimator and its

associated test statistics (first term)

I These are based on assumptions that are violated very often

I The finite-sample theory breaks down if one of the following three
assumptions is violated:

I the exogeneity of regressors
I the normality of the error term, and
I the linearity of the regression equation

I Asymptotic or large-sample theory provides an alternative approach

retaining only the third assumption

I It derives an approximation to the distribution of the estimator and its

associated statistics assuming that the sample size is sufficiently large

I Rather than making assumptions on the sample of a given size,

large-sample theory makes assumptions on the stochastic process that

generates the sample



Two Main Concepts of Asymptotic Theory

I The two main concepts in asymptotic theory: consistency and

asymptotic normality

I Some intuition
I Consistency: the more data we get, the closer we get to knowing the truth

(or we eventually know the truth)
I Asymptotic normality: as we get more and more data, averages of random

variables behave like normally distributed random variables.

I The main probability theory tools for establishing
I consistency → Laws of Large Numbers (LLNs)
I asymptotic normality → Central Limit Theorems (CLTs)



Probability Tools for Asymptotic Theory: LLN, CLT

I Laws of Large Numbers (LLNs)
I LLN is a result that states the conditions under which a sample average of

random variables converges to a population expectation.
I LLNs concern conditions under which the sequence of sample mean

converges either in probability or almost surely
I There are many LLN results (eg. Chebychev’s LLN, Kolmongo-

rov’s/Khinchine’s LLN, Markov’s LLN)

I Central Limit Theorems (CLTs)
I CLTs are about the limiting behaviour of the difference between a sample

mean and its expected value
I There are many CLTs (eg. Lindeberg-Levy CLT, Lindeberg-Feller CLT,

Liapounov’s CLT)



Modes of Convergence - Convergence in Probability

I A sequence of random variables {xn} converges in probability to a

constant c iff

lim
n→∞

Prob (|xn − c| > ε) = 0 for any ε > 0

Notation: plim xn = c or xn
p−→ c

I A sequence of K × 1 random vectors {xn} converges in probability to a

constant vector c iff

plim xkn = ck for all k = 1, . . . ,K

where xkn is the k-th element of xn, ck is the k-th element of c

I A sequence of random variables {xn} converges in probability to a random

variable x iff

lim
n→∞

Prob (|xn − x | > ε) = 0 for any ε > 0



Modes of Convergence - Almost Sure Convergence

I A sequence of random variables {xn} converges almost surely to a

constant c iff

Prob
(

lim
n→∞

xn = c
)

= 1

Notation: xn
a.s.−→ c

I A sequence of K × 1 random vectors {xn} converges almost surely to a

constant vector c iff

xkn
a.s.−→ ck for all k = 1, . . . ,K

I A sequence of random variables {xn} converges almost surely to a random

variable x iff

lim
n→∞

Prob (|xi − x | > ε for all i ≥ n) = 0 for any ε > 0



Modes of Convergence - Convergence in r-th Mean

I A sequence of random variables xn converges in r -th mean to a constant c

iff

E [|xn|r ] <∞ and lim
n→∞

E [|xn − c|r ] = 0

Notation: xn
r.m.−→ c

I For r = 2 it is called Converges in Mean Square and denoted by xn
m.s.−→ c

I A sequence of K × 1 random vectors {xn} converges in r -th mean to a

constant vector c iff

xkn
r.m.−→ ck for all k = 1, . . . ,K

I A sequence of random variables {xn} converges in r -th mean to a random

variable x iff

E [|xn|r ] <∞ and lim
n→∞

E [|xn − x |r ] = 0



Modes of Convergence - Convergence in Distribution

I A sequence of random variables xn converges in distribution to a random

variable x with CDF F (x) iff

lim
n→∞

| Fn(xn)− F (x) |= 0 at all continuity points of F (x)

where Fn(xn) is the CDF of xn.

Notation: xn
d−→ x

I If xn
d−→ x , then F (x) is called the limiting distribution of xn.

I A sequence of random vectors xn converges in distribution to a random

vector x with (joint) CDF F (x) iff

lim
n→∞

| Fn(xn)− F (x) |= 0 at all continuity points of F (x)

where Fn(xn) is the CDF of xn.

I Note that for convergence in distribution, unlike the other concepts of

convergence, element-by-element convergence does not necessarily mean

convergence for the vector sequence.



Relation among Modes of Convergence

i) xn
m.s.−→ c =⇒ xn

p−→ c (so xn
m.s.−→ x =⇒ xn

p−→ x)

ii) xn
a.s.−→ c =⇒ xn

p−→ c (so xn
a.s.−→ x =⇒ xn

p−→ x)

iii) xn
p−→ c ⇐⇒ xn

d−→ c

That is, if the limiting random variable is a constant (a trivial random

variable), convergence in distribution is the same as convergence in

probability.



Preservation of Convergence for Continuous Transformation

Suppose a(·) is a vector-valued continuous function that does not depend on n,

then

i) xn
p−→ c =⇒ a(xn)

p−→ a(c). Alternatively stated

plim a(xn) = a(plim xn)

ii) xn
d−→ x =⇒ a(xn)

d−→ a(x).



Combinations of Modes of Convergences

i) xn
d−→ x, yn

p−→ c =⇒ xn + yn
d−→ x + c.

ii) xn
d−→ x, yn

p−→ 0 =⇒ y′nxn
p−→ 0.

iii) xn
d−→ x, An

p−→ A =⇒ Anxn
d−→ Ax,

provided that An and xn are conformable.

In particular, if x ∼ N(0,Σ), then Anxn
d−→ N (0,AΣA′).

iv) xn
d−→ x, An

p−→ A =⇒ x′nA−1
n xn

d−→ x′A−1x,

provided that An and xn are conformable.

Parts (i) and (iii) are sometimes called Slutzky’s Theorem.



The Delta Method

Suppose xi is a sequence of K -dimensional random vectors such that

xn
p−→ c and

√
n (xn − c)

d−→ z

and suppose that a(·) : RK → Rr has continuous first derivatives with A(c)

denoting the r × K matrix of first derivatives evaluated at c:

A(c) ≡ ∂a(c)

∂c′

Then
√
n [a(xn)− a(c)]

d−→ A(c)z

In particular,

√
n (xn − c)

d−→ N(0,Σ) =⇒
√
n [a(xn)− a(c)]

d−→ N
(
0,A(c)ΣA(c)′

)



Khinchine Weak Law of Large Numbers (WLLN)

I If xi , i = 1, . . . , n is a random (i.i.d.) sample from a distribution with finite

mean E [xi ] = µ, then

plim x̄n = µ

I Extensions:
I Multivariate Extension (sequence of random vectors {xi})
I Relaxation of i.i.d. assumption
I Functions of random variables f (xi )
I Vector valued functions f (xi )



Lindeberg-Levy Central Limit Theorem

If xi , i = 1, . . . , n is a random (i.i.d.) sample from a distribution with finite

mean E [xi ] = µ and Var [xi ] = σ2, then

√
n (x̄n − µ)

d−→ N[0, σ2]

or

x̄n
a∼ N[µ,

σ2

n
]

Read
a∼ ’approximately distributed as’

CLT also holds for multivariate extension: sequence of random vectors


