Large Sample Theory (Review)

Ercan Karadas

New York University
Department of Economics

Spring, 2018

Notation

X

- ► A: matrix
- ▶ a: column vector
 - ▶ To denote column k of **A** use a_k
 - ► To denote a column of ones use i
 - ▶ To denote row k of **A** use $\mathbf{a}'_{\mathbf{k}}$
- ▶ i: a vector that contains .

Examples

- For a column vector $\mathbf{x} = (x_1, \dots, x_n)$
 - $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} i' x$
 - $\sum_{i=1}^{n} x_i^2 = \mathbf{x}' \mathbf{x}$
- ▶ For $n \times K$ matrix **X**
 - ▶ The inner product of the i^{th} and j^{th} columns of matrix **X**:

$$[\mathbf{X}'\mathbf{X}]_{ij} = [\mathbf{x}_i'\mathbf{x}_j]$$

► The K × K matrix X'X is the sum of n K × K matrices formed from a single row of X:

$$\mathbf{X}'\mathbf{X} = \sum_{i}^{n} \mathbf{x}'_{i} \mathbf{x}_{i}$$

M⁰: A Useful Idempotent Matrix

 ${f M}^0$ is matrix with all diagonal elements (1-1/n), and its off-diagonal elements -1/n:

$$\mathbf{M}^0 = \mathbf{I} - \frac{1}{n}\mathbf{i}\mathbf{i}'$$

▶ Deviations of **x** from its mean \bar{x} :

$$\mathbf{M}^{0}\mathbf{x} = \left(\mathbf{I} - \frac{1}{n}\mathbf{i}\mathbf{i}'\right)\mathbf{x} = \mathbf{x} - \frac{1}{n}\mathbf{i}\mathbf{i}'\mathbf{x} = \mathbf{x} - \mathbf{i}\bar{\mathbf{x}} = \begin{bmatrix} x_{1} - \bar{x} \\ x_{2} - \bar{x} \\ \vdots \\ x_{n} - \bar{x} \end{bmatrix}$$

For any constant vector $\mathbf{x} = (x, \dots, x)$

$$M^0x = 0$$

M⁰: A Useful Idempotent Matrix (cont'd)

▶ **M**⁰ is idempotent:

$$\mathbf{M}^{0'} = \mathbf{M}^0$$
 and $\mathbf{M}^0 \mathbf{M}^0 = \mathbf{M}^0$

For a vector $\mathbf{x} = (x_1, \dots, x_n)$ the sum of deviations about the mean:

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \mathbf{i}'[\mathbf{M}^0 \mathbf{x}] = [\mathbf{M}^0 \mathbf{i}]' \mathbf{x} = \mathbf{0}' \mathbf{x} = \mathbf{0}$$

▶ The sum of squared deviations about the mean:

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \mathbf{x}' \mathbf{M}^0 \mathbf{x}$$

▶ The sum of cross products in deviations from the column means:

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \mathbf{x}' \mathbf{M}^0 \mathbf{y}$$

M⁰: A Useful Idempotent Matrix (cont'd)

▶ 2 × 2 VC matrix:

$$\begin{bmatrix} \sum_{i=1}^n (x_i - \bar{x})^2 & \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) \\ \sum_{i=1}^n (y_i - \bar{x})(x_i - \bar{y}) & \sum_{i=1}^n (y_i - \bar{y})^2 \end{bmatrix} = \begin{bmatrix} \mathbf{x}' \mathbf{M}^0 \mathbf{x} & \mathbf{x}' \mathbf{M}^0 \mathbf{y} \\ \mathbf{y}' \mathbf{M}^0 \mathbf{x} & \mathbf{y}' \mathbf{M}^0 \mathbf{y} \end{bmatrix}$$

▶ Define $n \times 2$ matrix **Z** = [x y], then VC matrix can be written as:

$$\begin{vmatrix} \mathbf{x}' \mathbf{M}^0 \mathbf{x} & \mathbf{x}' \mathbf{M}^0 \mathbf{y} \\ \mathbf{y}' \mathbf{M}^0 \mathbf{x} & \mathbf{y}' \mathbf{M}^0 \mathbf{y} \end{vmatrix} = \begin{vmatrix} \mathbf{x}' \\ \mathbf{y}' \end{vmatrix} \mathbf{M}^0 \begin{bmatrix} \mathbf{x} & \mathbf{y} \end{bmatrix} = \mathbf{Z}' \mathbf{M}^0 \mathbf{Z}$$

Introduction

- We looked at finite-sample properties of the OLS estimator and its associated test statistics (first term)
- ▶ These are based on assumptions that are violated very often
- The finite-sample theory breaks down if one of the following three assumptions is violated:
 - the exogeneity of regressors
 - the normality of the error term, and
 - the linearity of the regression equation
- ► **Asymptotic** or **large-sample theory** provides an alternative approach retaining only the third assumption
- ▶ It derives an approximation to the distribution of the estimator and its associated statistics assuming that the sample size is sufficiently large
- Rather than making assumptions on the sample of a given size, large-sample theory makes assumptions on the stochastic process that generates the sample

Two Main Concepts of Asymptotic Theory

- ► The two main concepts in asymptotic theory: **consistency** and **asymptotic normality**
- Some intuition
 - Consistency: the more data we get, the closer we get to knowing the truth (or we eventually know the truth)
 - Asymptotic normality: as we get more and more data, averages of random variables behave like normally distributed random variables.
- ► The main probability theory tools for establishing
 - ▶ consistency → Laws of Large Numbers (LLNs)
 - ▶ asymptotic normality → Central Limit Theorems (CLTs)

Probability Tools for Asymptotic Theory: LLN, CLT

- ► Laws of Large Numbers (LLNs)
 - LLN is a result that states the conditions under which a sample average of random variables converges to a population expectation.
 - LLNs concern conditions under which the sequence of sample mean converges either in probability or almost surely
 - There are many LLN results (eg. Chebychev's LLN, Kolmongorov's/Khinchine's LLN, Markov's LLN)
- ► Central Limit Theorems (CLTs)
 - CLTs are about the limiting behaviour of the difference between a sample mean and its expected value
 - ► There are many CLTs (eg. Lindeberg-Levy CLT, Lindeberg-Feller CLT, Liapounov's CLT)

Modes of Convergence - Convergence in Probability

A sequence of random variables $\{x_n\}$ converges in probability to a constant c iff

$$\lim_{n\to\infty}\operatorname{Prob}\left(|x_n-c|>\varepsilon\right)=0\quad\text{for any }\varepsilon>0$$

Notation: plim $x_n = c$ or $x_n \stackrel{p}{\longrightarrow} c$

▶ A sequence of $K \times 1$ random vectors $\{\mathbf{x}_n\}$ converges in probability to a constant vector \mathbf{c} iff

$$plim x_{kn} = c_k \quad \text{for all } k = 1, \dots, K$$

where x_{kn} is the k-th element of \mathbf{x}_n , c_k is the k-th element of \mathbf{c}

▶ A sequence of random variables $\{x_n\}$ converges in probability to a random variable x iff

$$\lim_{n\to\infty} \operatorname{Prob}\left(|x_n-x|>\varepsilon\right)=0 \quad \text{for any } \varepsilon>0$$

Modes of Convergence - Almost Sure Convergence

▶ A sequence of random variables {x_n} converges almost surely to a constant c iff

$$\mathsf{Prob}\left(\lim_{n\to\infty}x_n=c\right)=1$$

Notation: $x_n \stackrel{a.s.}{\longrightarrow} c$

▶ A sequence of $K \times 1$ random vectors $\{\mathbf{x}_n\}$ converges almost surely to a constant vector \mathbf{c} iff

$$x_{kn} \xrightarrow{a.s.} c_k$$
 for all $k = 1, \dots, K$

▶ A sequence of random variables $\{x_n\}$ converges almost surely to a random variable x iff

$$\lim_{n\to\infty}\operatorname{Prob}\left(|x_i-x|>\varepsilon \text{ for all } i\geq n\right)=0\quad\text{for any }\varepsilon>0$$

Modes of Convergence - Convergence in r-th Mean

A sequence of random variables x_n converges in r-th mean to a constant c iff

$$E[|x_n|^r] < \infty$$
 and $\lim_{n \to \infty} E[|x_n - c|^r] = 0$

Notation: $x_n \stackrel{r.m.}{\longrightarrow} c$

- ▶ For r = 2 it is called Converges in Mean Square and denoted by $x_n \stackrel{m.s.}{\longrightarrow} c$
- ▶ A sequence of $K \times 1$ random vectors $\{x_n\}$ converges in r-th mean to a constant vector \mathbf{c} iff

$$x_{kn} \xrightarrow{r.m.} c_k$$
 for all $k = 1, \ldots, K$

▶ A sequence of random variables $\{x_n\}$ converges in r-th mean to a random variable x iff

$$E[|x_n|^r] < \infty$$
 and $\lim_{n \to \infty} E[|x_n - x|^r] = 0$

Modes of Convergence - Convergence in Distribution

A sequence of random variables x_n converges in distribution to a random variable x with CDF F(x) iff

$$\lim_{n\to\infty} |F_n(x_n) - F(x)| = 0$$
 at all continuity points of $F(x)$

where $F_n(x_n)$ is the CDF of x_n .

Notation: $x_n \stackrel{d}{\longrightarrow} x$

- ▶ If $x_n \xrightarrow{d} x$, then F(x) is called the limiting distribution of x_n .
- A sequence of random vectors x_n converges in distribution to a random vector x with (joint) CDF F(x) iff

$$\lim_{n\to\infty} |F_n(\mathbf{x}_n) - F(\mathbf{x})| = 0 \text{ at all continuity points of } F(\mathbf{x})$$

where $F_n(\mathbf{x}_n)$ is the CDF of \mathbf{x}_n .

▶ Note that for convergence in distribution, unlike the other concepts of convergence, element-by-element convergence does not necessarily mean convergence for the vector sequence.

Relation among Modes of Convergence

i)
$$x_n \xrightarrow{m.s.} c \implies x_n \xrightarrow{p} c$$
 (so $x_n \xrightarrow{m.s.} x \implies x_n \xrightarrow{p} x$)

ii)
$$\mathbf{x}_n \overset{a.s.}{\longrightarrow} \mathbf{c} \implies \mathbf{x}_n \overset{p}{\longrightarrow} \mathbf{c}$$
 (so $\mathbf{x}_n \overset{a.s.}{\longrightarrow} \mathbf{x} \implies \mathbf{x}_n \overset{p}{\longrightarrow} \mathbf{x}$)

iii)
$$\mathbf{x}_n \stackrel{p}{\longrightarrow} \mathbf{c} \iff \mathbf{x}_n \stackrel{d}{\longrightarrow} \mathbf{c}$$

That is, if the limiting random variable is a constant (a trivial random variable), convergence in distribution is the same as convergence in probability.

Preservation of Convergence for Continuous Transformation

Suppose $\mathbf{a}(\cdot)$ is a vector-valued continuous function that does not depend on n, then

i)
$$\mathbf{x}_n \stackrel{\rho}{\longrightarrow} \mathbf{c} \implies \mathbf{a}(\mathbf{x}_n) \stackrel{\rho}{\longrightarrow} \mathbf{a}(\mathbf{c})$$
. Alternatively stated
$$\mathsf{plim} \ \mathbf{a}(\mathbf{x}_n) = \mathbf{a}(\mathsf{plim} \ \mathbf{x}_n)$$

ii)
$$x_n \stackrel{d}{\longrightarrow} x \implies a(x_n) \stackrel{d}{\longrightarrow} a(x)$$
.

Combinations of Modes of Convergences

- i) $\mathbf{x}_n \stackrel{d}{\longrightarrow} \mathbf{x}$, $\mathbf{y}_n \stackrel{p}{\longrightarrow} \mathbf{c} \implies \mathbf{x}_n + \mathbf{y}_n \stackrel{d}{\longrightarrow} \mathbf{x} + \mathbf{c}$.
- ii) $\mathbf{x}_n \stackrel{d}{\longrightarrow} \mathbf{x}$, $\mathbf{y}_n \stackrel{p}{\longrightarrow} \mathbf{0} \implies \mathbf{y}'_n \mathbf{x}_n \stackrel{p}{\longrightarrow} \mathbf{0}$.
- iii) $\mathbf{x}_n \stackrel{d}{\longrightarrow} \mathbf{x}$, $\mathbf{A}_n \stackrel{p}{\longrightarrow} \mathbf{A} \implies \mathbf{A}_n \mathbf{x}_n \stackrel{d}{\longrightarrow} \mathbf{A} \mathbf{x}$, provided that \mathbf{A}_n and \mathbf{x}_n are conformable. In particular, if $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, then $\mathbf{A}_n \mathbf{x}_n \stackrel{d}{\longrightarrow} \mathcal{N}(\mathbf{0}, \mathbf{A} \mathbf{\Sigma} \mathbf{A}')$.
- iv) $\mathbf{x}_n \xrightarrow{d} \mathbf{x}$, $\mathbf{A}_n \xrightarrow{p} \mathbf{A} \implies \mathbf{x}'_n \mathbf{A}_n^{-1} \mathbf{x}_n \xrightarrow{d} \mathbf{x}' \mathbf{A}^{-1} \mathbf{x}$, provided that \mathbf{A}_n and \mathbf{x}_n are conformable.

Parts (i) and (iii) are sometimes called Slutzky's Theorem.

The Delta Method

Suppose x_i is a sequence of K-dimensional random vectors such that

$$\mathbf{x}_n \stackrel{p}{\longrightarrow} \mathbf{c}$$
 and $\sqrt{n} (\mathbf{x}_n - \mathbf{c}) \stackrel{d}{\longrightarrow} \mathbf{z}$

and suppose that $\mathbf{a}(\cdot): \mathbb{R}^K \to \mathbb{R}^r$ has continuous first derivatives with $\mathbf{A}(\mathbf{c})$ denoting the $r \times K$ matrix of first derivatives evaluated at \mathbf{c} :

$$\mathbf{A}(\mathbf{c}) \equiv \frac{\partial \mathbf{a}(\mathbf{c})}{\partial \mathbf{c}'}$$

Then

$$\sqrt{n}\left[\mathbf{a}(\mathbf{x}_n) - \mathbf{a}(\mathbf{c})\right] \stackrel{d}{\longrightarrow} \mathbf{A}(\mathbf{c})\mathbf{z}$$

In particular,

$$\sqrt{n}\left(x_{n}-c\right)\overset{d}{\longrightarrow}\textit{N}(\textbf{0},\textbf{\Sigma})\implies\sqrt{n}\left[a(x_{n})-a(c)\right]\overset{d}{\longrightarrow}\textit{N}\left(\textbf{0},\textbf{A}(c)\textbf{\Sigma}\textbf{A}(c)'\right)$$

Khinchine Weak Law of Large Numbers (WLLN)

▶ If x_i , i = 1, ..., n is a random (i.i.d.) sample from a distribution with finite mean $E[x_i] = \mu$, then

$$\mathsf{plim}\ \bar{x}_n = \mu$$

- Extensions:
 - ▶ Multivariate Extension (sequence of random vectors $\{x_i\}$)
 - ▶ Relaxation of i.i.d. assumption
 - Functions of random variables $f(x_i)$
 - ▶ Vector valued functions $f(\mathbf{x}_i)$

Lindeberg-Levy Central Limit Theorem

If x_i , $i=1,\ldots,n$ is a random (i.i.d.) sample from a distribution with finite mean $E[x_i] = \mu$ and $Var[x_i] = \sigma^2$, then

$$\sqrt{n}(\bar{x}_n - \mu) \stackrel{d}{\longrightarrow} N[0, \sigma^2]$$

or

$$\bar{x}_n \stackrel{\text{a}}{\sim} N[\mu, \frac{\sigma^2}{n}]$$

Read $\stackrel{\text{\scriptsize a}}{\sim}$ 'approximately distributed as'

CLT also holds for multivariate extension: sequence of random vectors