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Notation

Here we use the multiple equations notation. Vectors are of the form:
y: = (V1t,-- -, Ykt)' @ cloumn vector of length k.

y: contains the values of k variables at time t.

k ... the number of variables (i.g. number of equations)

T ... the number of observations

We do not distinguish in notation between data and random variables.



Motivation



Multivariate data

From an empirical/atheoretical point of view observed time series movements are
often related with each another. E.g.

» GDP growth and unemployment rate show an inverse pattern,

» oil prices might be a leading indicator for other energy prices, which on the
other hand have an effect on oil.



Weak stationarity: multivariate

We assume our series y; are weakly stationary. l.e. for k =2

E(yt) — [ E(yﬁ)

and  Cov(yi, Yi—e) = E(¥t — 1) (Yi—e — 1)’

Cov(yt, ¥t—i) =

Cov(y1t, Y1,t—¢) Cov(¥it, Yo,t—r) -7,
Cov(yat, ¥1,t—¢) Cov(yat, Y2,t—r)

are independent of timet. (=...,—1,0,1,....

» p is the mean vector, pu = (p1, ..., 1k)'-

» Ty the contemporaneous/concurrent covariance matrix
» I'o = [7;(0)] is a (k x k) matrix.

» T', the cross-covariance matrix of order ¢, T’y = [;i(¢)]



Cross-correlations



Cross-correlation matrices, CCMs

Let D = diag(o+, ..., 0x) with o; = 1/;i(0), the diagonal matrix of the standard

deviations of y;’s. Then
P = D_11_‘gD_1

with p, = [p;i(¢)], is the cross-correlation matrix of order /.

7ii(£) _ Cov(Yit, ¥j,t—¢)
7ii(0)+/7;(0) 0j0j

pii(¢) is the correlation coefficient between yj; and y; ;.

pi(£) =



Cross-correlation matrices: properties

We say with £ > 0, if with  ~;(¢) = Cov(¥it, ¥j,t—e)
pii(€) # 0: y; leads y;.
pji(f) #0:  y; leads y;.
pii(¢) is the autocorrelation coefficient of order ¢ of variable y;.
Properties of Ty and py:
» Ty, the covariance matrix, is symmetric (and pos def).
» I'y with ¢ # 0, is i.g. not symmetric.
pii(€) # pji(¢) in general
> 7;i(¢) =i(—¢) andso T, = I‘z_g):
Cov(¥it, ¥jt—e) = Cov(¥jt—e, Yit) = Cov(Yjt, Yitre) = Cov(¥jt, Viit—(~0))

Therefore we consider only CCMs with ¢ > 0.



Types of relationships

We distinguish several types of relationships between 2 series i and j (i # j):
» no linear relationship:  p;i(¢) = p;i(¢) =0 forall £ >0
» concurrently correlated:  p;(0) # 0
Some cross-correlations of higher order may be # 0.
» uncoupled: pij(€) = pji(¢) =0 forall £ > 0.
There is no lead-lag but possibly a concurrent relationship.
» unidirectional relationship (wrt time) from i to j:
pii(f) =0forall£>0 and pj(r)#0forsomev >0

» feedback relationship (wrt time):
pij(f) #0forsome ¢ >0 and p;(v)# 0 forsome v >0



Sample cross-correlations, properties

The sample values are straight forward as in the univariate case.

.
i (¢ Z it = Yi)Wjt—e — ¥))

» The estimates of 4’s and p’s are consistent (but biased in small samples).

» Under the hypothesis of multivariate white noise, the cross-correlations may
be tested individually with the (+1.96//T)-rule.

» The distribution in small samples may deviate considerably from the
expected, e.g. for stock returns due to heteroscedasticity and fat tails. Then
bootstrap resampling methods are recommended.



Cross-correlations and autocorrelated y;’s

» Cross-correlations can be interpreted in a nice way only, if at least one of both
series is white noise.

» Otherwise the autocorrelation structure of one series may interact with that of
the other and ’spurious’ cross effects may be observed.
» One way to resolve this problem is to use a prewhitening technique.

» Find a univariate model for one of the two series.

» Apply this estimated model also to the other.

» Interpret the cross-correlations between the residuals of the 1st model and the
residuals’ of the 2nd model, instead.



Multivariate portmanteau test

The univariate Ljung-Box statistic Q(m) has been generalized to
(k x k)-dimensional CCMs. The null hypothesis

Ho: p1=...=pm=0
is tested against the alternative
Ha: pi#0 forsome 1 <i<m

with
5t 00y ~ Xx2(k2m)

Rt

which is x? distributed with (k?m) degrees of freedom.



Multivariate portmanteau test

This test is suitable for the case where the interdependence of essentially
(univariate) white noise returns is in question.

If only a single series is not white noise, i.e. p;i(¢) # 0 for some ¢ > 0, the test will
reject as the univariate tests will do.



The VAR model



The VAR in standard form

A model taking into account/approximating multivariate dynamic relationships is
the VAR(p), vector autoregression of order p.

Vi=¢0+ P1Yi1+ ...+ PpYip+ €t

> y; is a vector of length k. There are k equations.
» pis the order of the VAR.

» {et} is a sequence of serially uncorrelated random vectors with concurrent full
rank covariance matrix 3 (not diagonal i.g.). They are coupled.
=1, 1 =0,¢+0)

> ¢gis a (k x 1) vector of constants.

» ®’s are (k x k) coefficient matrices.

The model is called VARX, if additional explanatories are included.



Example of VAR(1), k =2

Vi = @0 + P1Yi—1 + €

DR [

_|_
¢>‘” ok | | e

e | _ ¢$0)
Yot o)

or equation by equation

€1t
€2t

Vit = ¢>§°) + ¢>(1)y 1,t—1 + ¢12}/2z 1+ €t
2t = ¢(20) + ¢21 Yit—1 + ¢22 Yot—1 + €2t

The concurrent relationship between y; and y» is measured by the off-diagonal
elements of X.

If 012 = 0 there is no concurrent relationship.
o12 = Cov(ery, €ar) = Cov(yat(err), Yor(eat)|Vi-1)



Example of VAR(1), k =2

&, measures the dynamic dependence in y.

P12:

¢12 measures the linear dependence of yy; on y» ;1 in the presence of y; ;1.
If 12 = 0, y4+ does not depend on y» ;1. Then, y;; depends only on its own past.

Analogous for equation 2 and ¢»1.

> If p12 = 0 and ¢y # 0:
There is a unidirectional relationship from y; to y».

> If P12 =0 and ¢o1 = 0:
y1 and y» are coupled (in the sense that possibly o1 # 0).

> If ¢12 # 0 and ¢21 # 0:
There is a feedback relationship between both series.



Properties of the VAR



Properties of the VAR(1)
We investigate the statistical properties of a VAR(1).
Yi=¢o+ PYi1 + €t
Taking expectations we get pu =E(y;) = ¢po + PE(y;_1) or
p=Ey)=(-®) "¢
if (1 — ®)~" exists.
We demean the series as in the univariate case and denote  y;=y; — u
Vi=®y1 + €
Repeated substitutions gives the MA(oo) representation

Vi =€+ Pe 1 + ‘1’261_2 + ‘1’361_3 + ...



Properties of the VAR(1)

We see that y;_, is predetermined wrt e;.

>

>

>

Cov(et, ¥i—¢) =0, £ > 0. € is uncorrelated with all past y’s.

€; may be interpreted as a shock or innovation at time t.

It has possibly an effect on the future but not on the past.
Cov(y:,et) = X. (Multiply by €} and take expectations.)

y: depends on the innovation e;_; with the coeff matrix b/
This implies that ®/ has to vanish for stationarity when j — oc.

Thus, the eigenvalues of ® have to be smaller 1 in modulus. This is
necessary and sufficient for weak stationarity.

Then also (I — ®)~' exists.

(Cp. AR(1) process: yt = ayi—1 +¢  with |a| < 1.)

ry=®r,4, ¢>0.

Many properties generalize from the univariate AR to the VAR(p).



Properties, weakly stationary processes

» We define the (matrix) polynomial (for a VAR(p))
B(L)=1—BL—...— BLP
For stability it is required that the roots of the characteristic equation
|®(z)| =0, |z| > 1

are outside the unit circle. E.g. VAR(1): ®(L) =/ — ® L.

The VAR in standard form is well defined and can be used to approximate any
weakly stationary process arbitrarily well by choosing a suitable order p.



Representation of a VAR(p) as a VAR(1)

VAR(P): Yt=¢o+P1¥i1+...+PpYtp+e
Every VAR(p) can be written as a (k p)-dimensional VAR(1),
Xt =®" X1+ &t

Xt = (¥{_pi1:----¥) and & =(0,...,0,€) both (kp x 1).

0o I 0 ... 0

0 o0 I ... 0

0 o0 0o ... |
B, By By ... By |

The (k p x k p) matrix ®* is called companion matrix to the matrix polynomial
D(L)=1—-PL—...— PyLP .



Representation of a VAR(p) as a VAR(1)

The last component of x; is the mean corrected y;, y;.

The last row of ®* is essentially the VAR(p) recursion in reverse order.



Structural VAR and identification



Structural VAR

The VAR in standard form is also called VAR in reduced form, as it does not
contain the concurrent relationships in y explicitly. A VAR in structural form is

Oyt =00+01¥1+...+OpYtp+mnt

O is the coefficient matrix of the y;’s. Its diagonal elements are all 1.
n; is serially uncorrelated as e;, but its concurrent covariance matrix, €, is
diagonal. (The concurrent eff are captured in a possibly non diagonal ©.)

If ® is invertible, multiplication with ® ' yields the VAR in standard form with
® =09,

e=0"'p and T=0"TQO Y



ldentification

Comparing the number of coefficients including the error covariances, we find
» Standard form: 0+ k + pk® + [(k? — k)/2 + K]
» Structural form: (k® — k) + k +pk?® + k

The number of parameters of a generally specified structural model is always
(except k = 1) larger than that of the reduced form.



ldentification

» There is always (at least) one structural form corresponding to a standard
form (e.g. via the Cholesky decomposition of 3, see e.g. Tsay p.350)

» However, the representation in a structural form is not unique without putting
the required number of restrictions on the parameters in the ® matrices.
From the point of view of the structural form this is called the identification
problem.

» A ’disadvantage’ of the structural framework is that the concurrent
relationships of the y’s can be interpreted only together with some economic
theory.

Sims’(1980) conjecture was that the dynamic relationships can be interpreted
well, even without economic theory. Unfortunately, this does not hold.
(See the discussion of orthogonalized shocks 7; below.)



Estimation of a VAR in standard form

We assume the true relationship is a VAR(p), the model is correctly specified, and
the error is normal or close to normal.

» LS: If all variables are included in each equation (no restrictions on the
®;-parameters, j > 0) simple single equation LS is consistent and asy normal.
Clearly, single equation LS cannot be efficient, since the cross-covariances in
3 are ignored.

» GLS: Using the estimated covariances of €; improves efficiency.

Interpretation of the t-statistics of the single equation estimates is straight forward.



Curse of dimensionality

A VAR(p) in standard form has
pk?
parameters not counting the constant terms and the error variance-covariances.
The number of the parameters is
» linear in the order of the VAR, and
» increases quadratically with the dimension k.
The number of observations (k T) increases only linearly with k.

Remark: Emperically, it is difficult to interpret e.g. a significant &)%9;3.



Model selection

Like in the univariate ARMA modeling, single coefficients in ®;, j > 0, are not set
to zero a priori.

The model selection procedure starts with a maximal plausible order pmax. All
models with p = 0,1,..., pmax are estimated. The models can be ranked
according to an information criterion.

The (conditional) ML estimate of the concurrent error covariance matrix of the

model with order p is

The model selection criteria are [log(|2(p)|) ~ —(2/T)¢(p)]
AIC(p) = log(|%(p)|) +2pk*/T

SBC(p) = log(|=(p)|) + log(T) pk?/ T



Model validity

As in the univariate case the residuals of the chosen model should be
(multivariate) white noise. Here the pgf) for ¢ > 0 should be zero.

The multivariate Ljung-Box test may be applied with number of freedoms as the
number of cross-correlation coefficients under test reduced for the number of
estimated parameters:

k*(m - p)



Forecasting



Forecasting

Existing concurrent structural relationships between the endogenous variables are
demanding to interpret. However, due to the unique representation of the
reduced/standard form the model is suitable for forecasting.

The 1-step ahead forecast (conditional on data up to T) is
yr(1) = o+ ®1yr+ ... + BpY¥7_pi1
The 1-step ahead forecast error, er(1) = yr1 — yr(1), is

er(1) = erq



Forecasting

The 2-step ahead forecast is

y1(2) = ¢o + ®1yr(1) + Poyr + ... + PpY7_pi2

The 2-step ahead forecast error is

er(2) = yri2 — ¥7(2) = €742+ ®1[Y141 — Y7(1)] = €742 + PreT4
The ¢-step ahead forecast y7(¢) converges to the mean vector p as the forecast
horizon ¢ increases.
The covariance matrices are
» forer(1) X,
» forer(2) X+ &3P,

The covariance matrix of the ¢-step ahead forecast error converges to the
covariance matrix of y; as ¢ increases.



Impulse responses



Impulse responses

Analogous to the Wold representation of univariate weakly stationary process the
VAR(p) can be written in terms of concurrent and past innovations.

Vi=p+e+ Ve 1 +Woer o+ ...

This moving average representation makes the impact of an innovation €;_; at
(t —1i) on y; at t explicit. It is W;.
This impact is the same as of €; on y;. .

{W;} is called impulse response function, IRF.



Impulse responses

Since the components of ¢; are correlated the separating out of the effects of
single innovations is difficult. Thus we consider

Yi=p+ni+ i +¥omr o+ ...
where the components of n; are uncorrelated.
Winj = [¥iLln:j = ¥l ] = i€t

L is the Cholesky factor of X: X = LDL’ and € = Ln;

The diagonal matrix D is the covariance matrix of n;. Cov(n, 1) = D and
Cov(et, ) = 3.
Then the covariances of Ln;_; are those of €;_;.

E(ete;) = E(Lne)(Lnt) = E(L(nimy)L’) = LDL' =%



Impulse responses

Element @Z),j-(ﬁ) of ¥} is the impact of innovation 7; ; of size 1 on y; ¢,¢.

In practice instead of size 1, the standard deviation of the shock is used. Then the
diagonal elements of D are transformed to 1:

LDL = LIl

and ¥ = WL is used instead of ¥*.

Transformation from the representation of y in € to the representation in n is a trial
to infer from the errors of the reduced form to the structural errors. However, they
are not unique in general.

The impulse responses will change when the Cholesky algorithm does not start
with element (1,1) of X - as is commonly done - but e.g. with (k, k).
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