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Notation

Here we use the multiple equations notation. Vectors are of the form:
yt = (y1t , . . . , ykt )

′ a cloumn vector of length k .
yt contains the values of k variables at time t .
k . . . the number of variables (i.g. number of equations)
T . . . the number of observations

We do not distinguish in notation between data and random variables.



Motivation



Multivariate data

From an empirical/atheoretical point of view observed time series movements are
often related with each another. E.g.

I GDP growth and unemployment rate show an inverse pattern,
I oil prices might be a leading indicator for other energy prices, which on the

other hand have an effect on oil.



Weak stationarity: multivariate

We assume our series yt are weakly stationary. I.e. for k = 2

E(yt ) =

[
E(y1t )

E(y2t )

]
= µ

and Cov(yt ,yt−`) = E(yt − µ)(yt−` − µ)′

Cov(yt ,yt−`) =

[
Cov(y1t , y1,t−`) Cov(y1t , y2,t−`)

Cov(y2t , y1,t−`) Cov(y2t , y2,t−`)

]
= Γ`

are independent of time t . ` = . . . ,−1,0,1, . . . .

I µ is the mean vector, µ = (µ1, . . . , µk )′.
I Γ0 the contemporaneous/concurrent covariance matrix
I Γ0 = [γij(0)] is a (k × k) matrix.
I Γ` the cross-covariance matrix of order `, Γ` = [γij(`)]



Cross-correlations



Cross-correlation matrices, CCMs

Let D = diag(σ1, . . . , σk ) with σi =
√
γii(0), the diagonal matrix of the standard

deviations of yi ’s. Then
ρ` = D−1Γ`D−1

with ρ` = [ρij(`)], is the cross-correlation matrix of order `.

ρij(`) =
γij(`)√

γii(0)
√
γjj(0)

=
Cov(yit , yj,t−`)

σi σj

ρij(`) is the correlation coefficient between yit and yj,t−`.



Cross-correlation matrices: properties

We say with ` > 0, if with γij(`) = Cov(yit , yj,t−`)

ρij(`) 6= 0: yj leads yi .

ρji(`) 6= 0: yi leads yj .

ρii(`) is the autocorrelation coefficient of order ` of variable yi .

Properties of Γ` and ρ`:
I Γ0, the covariance matrix, is symmetric (and pos def).
I Γ` with ` 6= 0, is i.g. not symmetric.
ρij(`) 6= ρji(`) in general

I γij(`) = γji(−`) and so Γ` = Γ′(−`):
Cov(yit , yj,t−`) = Cov(yj,t−`, yit ) = Cov(yjt , yi,t+`) = Cov(yjt , yi,t−(−`))

Therefore we consider only CCMs with ` ≥ 0.



Types of relationships

We distinguish several types of relationships between 2 series i and j (i 6= j):
I no linear relationship: ρij(`) = ρji(`) = 0 for all ` ≥ 0
I concurrently correlated: ρij(0) 6= 0

Some cross-correlations of higher order may be 6= 0.
I uncoupled: ρij(`) = ρji(`) = 0 for all ` > 0.

There is no lead-lag but possibly a concurrent relationship.
I unidirectional relationship (wrt time) from i to j :
ρij(`) = 0 for all ` > 0 and ρji(ν) 6= 0 for some ν > 0

I feedback relationship (wrt time):
ρij(`) 6= 0 for some ` > 0 and ρji(ν) 6= 0 for some ν > 0



Sample cross-correlations, properties

The sample values are straight forward as in the univariate case.

γ̂ij(`) =
1
T

T∑
t=`+1

(yit − ȳi)(yj,t−` − ȳj)

I The estimates of γ’s and ρ’s are consistent (but biased in small samples).
I Under the hypothesis of multivariate white noise, the cross-correlations may

be tested individually with the (±1.96/
√

T )-rule.
I The distribution in small samples may deviate considerably from the

expected, e.g. for stock returns due to heteroscedasticity and fat tails. Then
bootstrap resampling methods are recommended.



Cross-correlations and autocorrelated yi ’s

I Cross-correlations can be interpreted in a nice way only, if at least one of both
series is white noise.

I Otherwise the autocorrelation structure of one series may interact with that of
the other and ’spurious’ cross effects may be observed.

I One way to resolve this problem is to use a prewhitening technique.
I Find a univariate model for one of the two series.
I Apply this estimated model also to the other.
I Interpret the cross-correlations between the residuals of the 1st model and the

’residuals’ of the 2nd model, instead.



Multivariate portmanteau test

The univariate Ljung-Box statistic Q(m) has been generalized to
(k × k)-dimensional CCMs. The null hypothesis

H0 : ρ1 = . . . = ρm = 0

is tested against the alternative

HA : ρi 6= 0 for some 1 ≤ i ≤ m

with

Qk (m) = T 2
m∑
`=1

1
T − `

tr(Γ̂′`Γ̂
−1
0 Γ̂`Γ̂

−1
0 ) ∼ χ2(k2m)

which is χ2 distributed with (k2m) degrees of freedom.



Multivariate portmanteau test

This test is suitable for the case where the interdependence of essentially
(univariate) white noise returns is in question.

If only a single series is not white noise, i.e. ρii(`) 6= 0 for some ` > 0, the test will
reject as the univariate tests will do.



The VAR model



The VAR in standard form

A model taking into account/approximating multivariate dynamic relationships is
the VAR(p), vector autoregression of order p.

yt = φ0 + Φ1yt−1 + . . .+ Φpyt−p + εt

I yt is a vector of length k . There are k equations.
I p is the order of the VAR.
I {εt} is a sequence of serially uncorrelated random vectors with concurrent full

rank covariance matrix Σ (not diagonal i.g.). They are coupled.
(Σ = Γ

(ε)
0 , Γ(ε)

` = 0, ` 6= 0)
I φ0 is a (k × 1) vector of constants.
I Φ’s are (k × k) coefficient matrices.

The model is called VARX, if additional explanatories are included.



Example of VAR(1), k = 2

yt = φ0 + Φ1yt−1 + εt[
y1t

y2t

]
=

[
φ
(0)
1

φ
(0)
2

]
+

[
φ
(1)
11 φ

(1)
12

φ
(1)
21 φ

(1)
22

][
y1,t−1

y2,t−1

]
+

[
ε1t

ε2t

]
or equation by equation

y1t = φ
(0)
1 + φ

(1)
11 y1,t−1 + φ

(1)
12 y2,t−1 + ε1t

y2t = φ
(0)
2 + φ

(1)
21 y1,t−1 + φ

(1)
22 y2,t−1 + ε2t

The concurrent relationship between y1 and y2 is measured by the off-diagonal
elements of Σ.

If σ12 = 0 there is no concurrent relationship.
σ12 = Cov(ε1t , ε2t ) = Cov(y1t (ε1t ), y2t (ε2t )|yt−1)



Example of VAR(1), k = 2

Φ1 measures the dynamic dependence in y .

φ12:
φ12 measures the linear dependence of y1t on y2,t−1 in the presence of y1,t−1.
If φ12 = 0, y1t does not depend on y2,t−1. Then, y1t depends only on its own past.

Analogous for equation 2 and φ21.

I If φ12 = 0 and φ21 6= 0:
There is a unidirectional relationship from y1 to y2.

I If φ12 = 0 and φ21 = 0:
y1 and y2 are coupled (in the sense that possibly σ12 6= 0).

I If φ12 6= 0 and φ21 6= 0:
There is a feedback relationship between both series.



Properties of the VAR



Properties of the VAR(1)

We investigate the statistical properties of a VAR(1).

yt = φ0 + Φyt−1 + εt

Taking expectations we get µ = E(yt ) = φ0 + ΦE(yt−1) or

µ = E(yt ) = (I −Φ)−1φ0

if (I −Φ)−1 exists.

We demean the series as in the univariate case and denote ỹt = yt − µ

ỹt = Φỹt−1 + εt

Repeated substitutions gives the MA(∞) representation

ỹt = εt + Φεt−1 + Φ2εt−2 + Φ3εt−3 + . . .



Properties of the VAR(1)

We see that yt−` is predetermined wrt εt .
I Cov(εt ,yt−`) = 0, ` > 0. εt is uncorrelated with all past y ’s.
I εt may be interpreted as a shock or innovation at time t .

It has possibly an effect on the future but not on the past.
I Cov(yt , εt ) = Σ. (Multiply by ε′t and take expectations.)
I yt depends on the innovation εt−j with the coeff matrix Φj .

This implies that Φj has to vanish for stationarity when j →∞.
I Thus, the eigenvalues of Φ have to be smaller 1 in modulus. This is

necessary and sufficient for weak stationarity.
Then also (I −Φ)−1 exists.
(Cp. AR(1) process: yt = αyt−1 + εt with |α| < 1.)

I Γ` = ΦΓ`−1, ` > 0.

Many properties generalize from the univariate AR to the VAR(p).



Properties, weakly stationary processes

I We define the (matrix) polynomial (for a VAR(p))

Φ(L) = I −Φ1L− . . .−ΦpLp

For stability it is required that the roots of the characteristic equation

|Φ(z)| = 0, |z| > 1

are outside the unit circle. E.g. VAR(1): Φ(L) = I −ΦL.

The VAR in standard form is well defined and can be used to approximate any
weakly stationary process arbitrarily well by choosing a suitable order p.



Representation of a VAR(p) as a VAR(1)

VAR(p) : yt = φ0 + Φ1yt−1 + . . .+ Φpyt−p + εt

Every VAR(p) can be written as a (k p)-dimensional VAR(1),

xt = Φ∗xt−1 + ξt

xt = (ỹ ′t−p+1, . . . , ỹ
′
t )′ and ξt = (0, . . . ,0, ε′t )

′ both (k p × 1).

Φ∗ =


0 I 0 . . . 0
0 0 I . . . 0
· · · · · · · · · · · · · · ·
0 0 0 . . . I
Φp Φp−1 Φp−2 . . . Φ1


The (k p × k p) matrix Φ∗ is called companion matrix to the matrix polynomial
Φ(L) = I −Φ1L− . . .−ΦpLp .



Representation of a VAR(p) as a VAR(1)

The last component of xt is the mean corrected yt , ỹt .

The last row of Φ∗ is essentially the VAR(p) recursion in reverse order.



Structural VAR and identification



Structural VAR

The VAR in standard form is also called VAR in reduced form, as it does not
contain the concurrent relationships in y explicitly. A VAR in structural form is

Θyt = θ0 + Θ1yt−1 + . . .+ Θpyt−p + ηt

Θ is the coefficient matrix of the yt ’s. Its diagonal elements are all 1.
ηt is serially uncorrelated as εt , but its concurrent covariance matrix, Ω, is
diagonal. (The concurrent eff are captured in a possibly non diagonal Θ.)

If Θ is invertible, multiplication with Θ−1 yields the VAR in standard form with

Φj = Θ−1Θj

εt = Θ−1ηt and Σ = Θ−1Ω(Θ−1)′



Identification

Comparing the number of coefficients including the error covariances, we find
I Standard form: 0 + k + p k2 + [(k2 − k)/2 + k ]

I Structural form: (k2 − k) + k + p k2 + k

The number of parameters of a generally specified structural model is always
(except k = 1) larger than that of the reduced form.



Identification

I There is always (at least) one structural form corresponding to a standard
form (e.g. via the Cholesky decomposition of Σ, see e.g. Tsay p.350)

I However, the representation in a structural form is not unique without putting
the required number of restrictions on the parameters in the Θ matrices.
From the point of view of the structural form this is called the identification
problem.

I A ’disadvantage’ of the structural framework is that the concurrent
relationships of the y ’s can be interpreted only together with some economic
theory.
Sims’(1980) conjecture was that the dynamic relationships can be interpreted
well, even without economic theory. Unfortunately, this does not hold.
(See the discussion of orthogonalized shocks ηt below.)



Estimation of a VAR in standard form

We assume the true relationship is a VAR(p), the model is correctly specified, and
the error is normal or close to normal.

I LS: If all variables are included in each equation (no restrictions on the
Φj -parameters, j > 0) simple single equation LS is consistent and asy normal.
Clearly, single equation LS cannot be efficient, since the cross-covariances in
Σ are ignored.

I GLS: Using the estimated covariances of εt improves efficiency.

Interpretation of the t-statistics of the single equation estimates is straight forward.



Curse of dimensionality

A VAR(p) in standard form has
p k2

parameters not counting the constant terms and the error variance-covariances.

The number of the parameters is
I linear in the order of the VAR, and
I increases quadratically with the dimension k .

The number of observations (k T ) increases only linearly with k .

Remark: Emperically, it is difficult to interpret e.g. a significant Φ̂
(9)
7,23.



Model selection

Like in the univariate ARMA modeling, single coefficients in Φj , j > 0, are not set
to zero a priori.
The model selection procedure starts with a maximal plausible order pmax . All
models with p = 0,1, . . . ,pmax are estimated. The models can be ranked
according to an information criterion.
The (conditional) ML estimate of the concurrent error covariance matrix of the
model with order p is

Σ̂(p) =
1
T

T∑
t=p+1

ε̂t (p) ε̂′t (p)

The model selection criteria are [log(|Σ̂(p)|) ≈ −(2/T ) ``(p)]

AIC(p) = log(|Σ̂(p)|) + 2 p k2/T

SBC(p) = log(|Σ̂(p)|) + log(T ) p k2/T



Model validity

As in the univariate case the residuals of the chosen model should be
(multivariate) white noise. Here the ρ

(ε)
` for ` > 0 should be zero.

The multivariate Ljung-Box test may be applied with number of freedoms as the
number of cross-correlation coefficients under test reduced for the number of
estimated parameters:

k2(m − p)



Forecasting



Forecasting

Existing concurrent structural relationships between the endogenous variables are
demanding to interpret. However, due to the unique representation of the
reduced/standard form the model is suitable for forecasting.

The 1-step ahead forecast (conditional on data up to T ) is

yT (1) = φ0 + Φ1yT + . . .+ ΦpyT−p+1

The 1-step ahead forecast error, eT (1) = yT+1 − yT (1), is

eT (1) = εT+1



Forecasting

The 2-step ahead forecast is

yT (2) = φ0 + Φ1yT (1) + Φ2yT + . . .+ ΦpyT−p+2

The 2-step ahead forecast error is

eT (2) = yT+2 − yT (2) = εT+2 + Φ1[yT+1 − yT (1)] = εT+2 + Φ1εT+1

The `-step ahead forecast yT (`) converges to the mean vector µ as the forecast
horizon ` increases.

The covariance matrices are
I for eT (1) Σ,
I for eT (2) Σ + Φ1ΣΦ′1.

The covariance matrix of the `-step ahead forecast error converges to the
covariance matrix of yt as ` increases.



Impulse responses



Impulse responses

Analogous to the Wold representation of univariate weakly stationary process the
VAR(p) can be written in terms of concurrent and past innovations.

yt = µ + εt + Ψ1εt−1 + Ψ2εt−2 + . . .

This moving average representation makes the impact of an innovation εt−i at
(t − i) on yt at t explicit. It is Ψi .

This impact is the same as of εt on yt+i .

{Ψi} is called impulse response function, IRF.



Impulse responses

Since the components of εt are correlated the separating out of the effects of
single innovations is difficult. Thus we consider

yt = µ + ηt + Ψ∗1ηt−1 + Ψ∗2ηt−2 + . . .

where the components of ηt are uncorrelated.

Ψ∗j ηt−j = [ΨjL]ηt−j = Ψj [Lηt−j ] = Ψjεt−j

L is the Cholesky factor of Σ: Σ = LDL′ and εt = Lηt

The diagonal matrix D is the covariance matrix of ηt . Cov(ηt ,ηt ) = D and
Cov(εt , εt ) = Σ.
Then the covariances of Lηt−j are those of εt−j .

E(εtε
′
t ) = E(Lηt )(Lηt )

′ = E(L(ηtη
′
t )L
′) = LDL′ = Σ



Impulse responses

Element ψ∗ij (`) of Ψ∗` is the impact of innovation ηj,t of size 1 on yi,t+`.

In practice instead of size 1, the standard deviation of the shock is used. Then the
diagonal elements of D are transformed to 1:

LDL′ = L̃IL̃′

and Ψ̃ = ΨL̃ is used instead of Ψ∗.

Transformation from the representation of y in ε to the representation in η is a trial
to infer from the errors of the reduced form to the structural errors. However, they
are not unique in general.
The impulse responses will change when the Cholesky algorithm does not start
with element (1,1) of Σ - as is commonly done - but e.g. with (k , k).
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