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Motivation



Paths of Dow JC and DAX: 10/2009 - 10/2010

We observe a parallel development. Remarkably this pattern can be observed for
single years at least since 1998, though both are assumed to be geometric
random walks. They are non stationary, the log-series are I(1).

If a linear combination of I(1) series is stationary, i.e. I(0), the series are called
cointegrated.
If 2 processes xt and yt are both I(1) and

yt − αxt = εt

with εt trend-stationary or simply I(0), then xt and yt are called cointegrated.



Cointegration in economics

This concept origins in macroeconomics where series often seen as I(1) are
regressed onto, like private consumption, C, and disposable income, Y d .
Despite I(1), Y d and C cannot diverge too much in either direction:

C > Y d or C � Y d

Or, according to the theory of competitive markets the profit rate of firms
(profits/invested capital) (both I(1)) should converge to the market average over
time. This means that profits should be proportional to the invested capital in the
long run.



Common stochastic trend

The idea of cointegration is that there is a common stochastic trend, an I(1)
process Z , underlying two (or more) processes X and Y . E.g.

Xt = γ0 + γ1Zt + εt

Yt = δ0 + δ1Zt + ηt

εt and ηt are stationary, I(0), with mean 0. They may be serially correlated.

Though Xt and Yt are both I(1), there exists a linear combination of them which is
stationary:

δ1Xt − γ1Yt ∼ I(0)



Models with I(1) variables



Spurious regression

The spurious regression problem arises if arbitrarily
I trending or
I nonstationary

series are regressed on each other.

I In case of (e.g. deterministic) trending the spuriously found relationship is due
to the trend (growing over time) governing both series instead to economic
reasons.
t-statistic and R2 are implausibly large.

I In case of nonstationarity (of I(1) type) the series - even without drifts - tend to
show local trends, which tend to comove along for relative long periods.



Spurious regression: independent I(1)’s

We simulate paths of 2 RWs without drift with independently generated standard
normal white noises, εt , ηt .

Xt = Xt−1 + εt , Yt = Yt−1 + ηt , t = 1,2,3, . . . ,T

Then we estimate by LS the model

Yt = α + βXt + ζt

In the population α = 0 and β = 0, since Xt and Yt are independent.
Replications for increasing sample sizes shows that

I the DW-statistics are close to 0. R2 is too large.
I ζt is I(1), nonstationary.
I the estimates are inconsistent.
I the tβ-statistic diverges with rate

√
T .



Spurious regression: independence

As both X and Y are independent I(1)s, the relation can be checked consistently
using first differences.

∆Yt = β∆Xt + ξt

Here we find that
I β̂ has the usual distribution around zero,
I the tβ-values are t-distributed,
I the error ξt is WN.



Bivariate cointegration

However, if we observe two I(1) processes X and Y , so that the linear combination

Yt = α + βXt + ζt

is stationary, i.e. ζt is stationary, then
I Xt and Yt are cointegrated.

When we estimate this model with LS,
I the estimator β̂ is not only consistent, but superconsistent. It converges with

the rate T ,
instead of

√
T .

I However, the tβ-statistic is asy normal only if ζt is not serially correlated.



Bivariate cointegration: discussion

I The Johansen procedure (which allows for correction for serial correlation
easily) (see below) is to be preferred to single equation procedures.

I If the model is extended to 3 or more variables, more than one relation with
stationary errors may exist. Then when estimating only a multiple regression,
it is not clear what we get.



Cointegration



Definition: Cointegration

Definition: Given a set of I(1) variables {x1t , . . . , xkt}. If there exists a linear
combination consisting of all vars with a vector β so that

β1x1t + . . .+ βkxkt = β′xt . . . trend-stationary

βj 6= 0, j = 1, . . . , k . Then the x ’s are cointegrated of order CI(1,1).
I β′xt is a (trend-)stationary variable.
I The definition is symmetric in the vars. There is no interpretation of

endogenous or exogenous vars. A simultaneous relationship is described.

Definition: Trend-stationarity means that after subtracting a deterministic trend the process is I(0).



Definition: Cointegration (cont)

I β is defined only up to a scale.
If β′xt is trend-stationary, then also c(β′xt ) with c 6= 0.
Moreover, any linear combination of cointegrating relationships (stationary
variables) is stationary.

I More generally we could consider x ∼ I(d) and β′x ∼ I(d − b) with b > 0.
Then the x ’s are CI(d ,b).

I We will deal only with the standard case of CI(1,1).



An unstable VAR(1), an example



An unstable VAR(1): xt = Φ1xt−1 + εt

We analyze in the following the properties of[
x1t

x2t

]
=

[
0.5 −1.
−.25 0.5

][
x1,t−1

x2,t−1

]
+

[
ε1t

ε2t

]

εt are weakly stationary and serially uncorrelated.

We know a VAR(1) is stable, if the eigenvalues of Φ1 are less 1 in modulus.
I The eigenvalues of Φ1 are λ1,2 = 0,1.
I The roots of the characteristic function |I −Φ1z| = 0 should be outside the

unit circle for stationarity.
Actually, the roots are z = (1/λ) with λ 6= 0. z = 1.

Φ1 has a root on the unit circle. So process xt is not stable.

Remark: Φ1 is singular; its rank is 1.



Common trend

For all Φ1 there exists an invertible (i.g. full) matrix L so that

LΦ1L−1 = Λ

Λ is (for simplicity) diagonal containing the eigenvalues of Φ1.

We define new variables yt = Lxt and ηt = Lεt .
Left multiplication of the VAR(1) with L gives

Lxt = LΦ1xt−1 + Lεt

(Lxt ) = LΦ1L−1(Lxt−1) + (Lεt )

yt = Λyt−1 + ηt



Common trend: x ’s are I(1)

In our case L and Λ are

L =

[
1.0 −2.0
0.5 1.0

]
, Λ =

[
1 0
0 0

]

Then [
y1t

y2t

]
=

[
1 0
0 0

][
y1,t−1

y2,t−1

]
+

[
η1t

η2t

]

I ηt = Lεt : η1t and η2t are linear combinations of stationary processes. So
they are stationary.

I So also y2t is stationary.
I y1t is obviously integrated of order 1, I(1).



Common trend y1t , x ’s as function of y1t

yt = Lxt with L invertible, so we can express xt in yt .
Left multiplication by L−1 gives

L−1yt = L−1Λyt−1 + L−1ηt

xt = (L−1Λ)yt−1 + εt

L−1 = . . .

x1t = (1/2)y1,t−1 + ε1t

x2t = −(1/4)y1,t−1 + ε2t

I Both x1t and x2t are I(1), since y1t is I(1).
I y1t is called the common trend of x1t and x2t . It is the common nonstationary

component in both x1t and x2t .



Cointegrating relation

Now we eliminate y1,t−1 in the system above by multiplying the 2nd equation by 2
and adding to the first.

x1t + 2x2t = (ε1,t + 2ε2,t )

This gives a stationary process, which is called the cointegrating relation. This is
the only linear combination (apart from a factor) of both nonstationary processes,
which is stationary.



A cointegrated VAR(1) example



A cointegrated VAR(1)
We go back to the system and proceed directly.

xt = Φ1xt−1 + εt

and subtract xt−1 on both sides (cp. the Dickey-Fuller statistic).[
∆x1t

∆x2t

]
=

[
−.5 −1.
−.25 −.5

][
x1,t−1

x2,t−1

]
+

[
ε1t

ε2t

]
The coefficient matrix Π, Π = −(I −Φ1), in

∆xt = Πxt−1 + εt

has only rank 1. It is singular.
Then Π can be factorized as

Π = αβ′

(2× 2) = (2× 1)(1× 2)



A cointegrated VAR(1)

k the number of endogenous variables, here k = 2.
m = Rank(Π) = 1, is the number of cointegrating relations.

A solution for Π = αβ′ is[
−.5 −1.
−.25 −.5

]
=

(
−.5
−.25

)(
1
2

)′
=

(
−.5
−.25

)(
1 2

)

Substituted in the model[
∆x1t

∆x2t

]
=

(
−.5
−.25

)(
1 2

)[ x1,t−1

x2,t−1

]
+

[
ε1t

ε2t

]



A cointegrated VAR(1)

Multiplying out[
∆x1t

∆x2t

]
=

(
−.5
−.25

)(
x1,t−1 + 2x2,t−1

)
+

[
ε1t

ε2t

]

The component (x1,t−1 + 2x2,t−1) appears in both equations.
As the lhs variables and the errors are stationary, this linear combination is
stationary.
This component is our cointegrating relation from above.



Vector error correction, VEC



VECM, vector error correction model

Given a VAR(p) of I(1) x ’s (ignoring consts and determ trends)

xt = Φ1xt−1 + . . .+ Φpxt−p + εt

There always exists an error correction representation of the form (trick
xt = xt−1 + ∆xt )

∆xt = Πxt−1 +

p−1∑
i=1

Φ∗i ∆xt−i + εt

where Π and the Φ∗ are functions of the Φ’s. Specifically,

Φ∗j = −
p∑

i=j+1

Φi , j = 1, . . . ,p − 1

Π = −(I −Φ1 − . . .−Φp) = −Φ(1)

The characteristic polynomial is I −Φ1z − . . .−Φpzp = Φ(z).



Interpretation of ∆xt = Πxt−1 +
∑p−1

i=1 Φ∗i ∆xt−i + εt

I If Π = 0, (all λ(Π) = 0) then there is no cointegration. Nonstationarity of I(1)
type vanishes by taking differences.

I If Π has full rank, k , then the x ’s cannot be I(1) but are stationary.
(Π−1∆xt = xt−1 + . . .+ Π−1εt )

I The interesting case is, Rank(Π) = m,0 < m < k , as this is the case of
cointegration. We write

Π = αβ′

(k × k) = (k ×m)[(k ×m)′]

where the columns of β contain the m cointegrating vectors, and the columns
of α the m adjustment vectors.

Rank(Π) = min[ Rank(α), Rank(β) ]



Long term relationship in ∆xt = Πxt−1 +
∑p−1

i=1 Φ∗i ∆xt−i + εt

There is an adjustment to the ’equilibrium’ x∗ or long term relation described by
the cointegrating relation.

I Setting ∆x = 0 we obtain the long run relation, i.e.

Πx∗ = 0

This may be wirtten as
Πx∗ = α(β′x∗) = 0

In the case 0 < Rank(Π) = Rank(α) = m < k the number of equations of this
system of linear equations which are different from zero is m.

β′x∗ = 0m×1



Long term relationship

I The long run relation does not hold perfectly in (t − 1). There will be some
deviation, an error,

β′xt−1 = ξt−1 6= 0

I The adjustment coefficients in α multiplied by the ’errors’ β′xt−1 induce
adjustment. They determine ∆x t , so that the x ’s move in the correct direction
in order to bring the system back to ’equilibrium’.



Adjustment to deviations from the long run

I The long run relation is in the example above

x1,t−1 + 2x2,t−1 = ξt−1

ξt is the stationary error.
I The adjustment of x1,t in t to ξt−1, the deviation from the long run in (t − 1), is

∆x1,t = (−.5)ξt−1 and x1,t = ∆x1,t + x1,t−1

I If ξt−1 > 0, the error is positive, i.e. x1,t−1 is too large c.p., then ∆x1,t , the
change in x1, is negative. x1 decreases to guarantee convergence back to the
long run path.

I Similar for x2,t in the 2nd equation.



Cointegrated VAR models (CIVAR)



Model

We consider a VAR(p) with xt I(1), (unit root) nonstationary.

xt = φ + Φ1xt−1 + . . .+ Φpxt−p + εt

Then

I ∆xt is I(0).
I Π = −Φ(1) is singular, i.e. |Φ(1)| = 0

(For weakly stationarity, I(0): |Φ(z)| = 0 only for |z| > 1.)

The VEC representation reads with Π = αβ′

∆xt = φ + Πxt−1 +

p−1∑
i=1

Φ∗i ∆xt−i + εt

Πxt−1 is called the error-correction term.



3 cases

We distinguish 3 cases for Rank(Π) = m:

I. m = 0 : Π = 0 (all λ(Π) = 0)

II. 0 < m < k : Π = αβ′, α(k×m), (β′)(m×k)

III. m = k : |Π| = | −Φ(1)| 6= 0!



I. Rank(Π) = 0, m = 0 (all λ(Π) = 0):

In case of Rank(Π) = 0, i.e. m = 0, it follows
I Π = 0, the null matrix.
I There does not exist a linear combination of the I(1) vars, which is stationary.
I The x ’s are not cointegrated.
I The EC form reduces to a stationary VAR(p − 1) in differences.

∆xt = φ +

p−1∑
i=1

Φ∗i ∆xt−i + εt

I Π has m = 0 eigenvalues different from 0.



II. Rank(Π) = m, 0 < m < k :

The rank of Π is m, m < k . We factorize Π in two rank m matrices α and β′.
Rank(α) = Rank(β) = m.
Both α and β are (k ×m).

Π = αβ′ 6= 0

The VEC form is then

∆xt = φ + αβ′ xt−1 +

p−1∑
i=1

Φ∗i ∆xt−i + εt

I The x ’s are integrated, I(1).
I There are m eigenvalues λ(Π) 6= 0.
I The x ’s are cointegrated. There are m linear combinations, which are

stationary.



II. Rank(Π) = m, 0 < m < k :

I There are m linear independent cointegrating (column) vectors in β.
I The m stationary linear combinations are β′xt .
I xt has (k −m) unit roots, so (k −m) common stochastic trends.

There are
I k I(1) variables,
I m cointegrating relations (eigenvalues of Π different from 0), and
I (k −m) stochastic trends.

k = m + (k −m)



III. Rank(Π) = m, m = k :

Full rank of Π implies
I that |Π| = | −Φ(1)| 6= 0.
I xt has no unit root. That is xt is I(0).
I There are (k −m) = 0 stochastic trends.
I As consequence we model the relationship of the x ’s in levels, not in

differences.
I There is no need to refer to the error correction representation.



II. Rank(Π) = m, 0 < m < k : (cont) common trends

A general way to obtain the (k −m) common trends is to use the orthogonal
complement matrix α⊥ of α.

α′⊥α = 0

{k × (k −m)}′{k ×m} = {(k −m)×m}

If the ECM is left multiplied by α′⊥ the error correction term vanishes,

α′⊥Π = (α′⊥α)β′ = 0(k−m)×k

with α′⊥∆xt = ∆(α′⊥xt )

∆(α′⊥xt ) = (α′⊥φ) +

p−1∑
i=1

Φ∗i ∆(α′⊥xt−i) + (α′⊥εt )



II. Rank(Π) = m, 0 < m < k : (cont) common trends

The resulting system is a (k −m) dimensional system of first differences,
corresponding to (k −m) independent RWs

α′⊥xt

which are the common trends.

Example (from above): α = (−1,−.5)′ then α⊥ = (1,−2)′.



Non uniqueness of α,β in Π = αβ′

For any orthogonal matrix Ωm×m, ΩΩ′ = I ,

αβ′ = αΩΩ′ β′ = (αΩ)(βΩ)′ = α∗(β∗)′

where both α∗ and β∗ are of rank m.

Usually the structure
β′ = [Im×m, (β′1)m×(k−m)]

is imposed.
Each of the first m variables belong only to one equation and their coeffs are 1.

Economic interpretation is helpful when structuring β′. Also, a reordering of the
vars might be necessary.



Inclusion of deterministic functions

There are several possibilities to specify the deterministic part, φ, in the model.

1 φ = 0: All components of xt are I(1) without drift. The stationary series
wt = β′xt has a zero mean.

2 φ = (φ0)k×1 = αk×m c0,m×1: This is the special case of a restricted constant.
The ECM is

∆xt = α(β′xt−1 + c0) + . . .

wt = β′xt has a mean of (−c0).
There is only a constant in the cointegrating relation, but the x ’s are I(1)
without a drift.

3 φ = φ0 6= 0: The x ’s are I(1) with drift. The coint rel may have a nonzero
mean. Intercept φ0 may be spilt in a drift component and a const vector in the
coint eq’s.



Inclusion of deterministic functions

4 φ = φt = φ0 + (αc1)t :
Analogous, φ0 enters the drift of the x ’s. c1 becomes the trend in the coint rel.

∆xt = φ0 + α(β′xt−1 + c1t) + . . .

5 φ = φt = φ0 + φ1t :
Both constant and slope of the trend are unrestricted. The trending behavior
in the x ’s is determined both by a drift and a quadratic trend.
The coint rel may have a linear trend.

Case 3, φ = φ0, is relevant for asset prices.

Remark: The assignment of the const to either intercept or coint rel is not unique.



ML estimation: Johansen (1)

Estimation is a 3-step procedure:
I 1st step: We start with the VEC representation and extract the effects of the

lagged ∆xt−j from the lhs ∆xt and from the rhs xt−1. (Cp. Frisch-Waugh).
This gives the residuals ût for ∆xt and v̂t for xt−1, and the model

ût = Πv̂t + εt

I 2nd step: All variables in the cointegration relation are dealt with
symmetrically. There are no endogenous and no exogeneous variables. We
view this system as

(α̃)−1ut = β̃′vt

where α̃ and β̃ are (k × k). The solution is obtained by canonical correlation.



Johansen (2): canonical correlation

I We determine vectors α̌j , β̌j so that the linear combinations

α̌′jut and β̌′j vt

correlate
I maximal for j = 1,
I maximal subjcet to orthogonality wrt the solution for j = 1 (→ j = 2),
I etc.

For the largest correlation we get a largest eigenvalue, λ1, for the second largest a
smaller one, λ2 < λ1, etc. The eigenvalues are the squared (canonical) correlation
coefficients.
The columns of β are the associated normalized eigenvectors.

The λ’s are not the eigenvalues of Π, but have the same zero/nonzero properties.



Johansen (2)

Actually we solve a generalized eigenvalue problem

|λS11 − S10S−1
00 S01| = 0

with the sample covariance matrices

S00 =
1

T − p

∑
ût û′t , S01 =

1
T − p

∑
ût v̂ ′t

S11 =
1

T − p

∑
v̂t v̂ ′t

The number of eigenvalues λ larger 0 determines the rank of β, resp. Π, and so
the number of cointegrating relations:

λ1 > . . . > λm > 0 = . . . = 0 = λk



Johansen (3)

3rd step: In this final step the adjustment parameters α and the Φ∗’s are
estimated.

∆xt = φ + αβ′xt−1 +

p−1∑
i=1

Φ∗i ∆xt−i + εt

The maximized likelihood function based on m cointegrating vectors is

L−2/T
max ∝ |S00|

m∏
i=1

(1− λ̂i)

Under Gaussian innovations and the model is true, the estimates of the Φ∗j
matrices are asy normal and asy efficient.

Remark: S00 depends only on ∆xt and ∆xt−j , j = 1, . . . , p.



Test for cointegration: trace test

Given the specification of the deterministic term we test for the rank m of Π. There
are 2 sequential tests

the trace test, and

the maximum eigenvalue test.

I trace test:

H0 : Rank(Π) = m against HA : Rank(Π) > m

The likelihood ratio statistic is

LKtr (m) = −(T − p)
k∑

i=m+1

ln(1− λ̂i)

We start with m = 0 – that is Rank(Π) = 0, there is no cointegration – against
m ≥ 1, that there is at least one coint rel. Etc.



Test for cointegration: trace test

LKtr (m) takes large values (i.e. H0 is rejected) when the ’sum’ of the remaining
eigenvalues λm+1 ≥ λm+2 ≥ . . . ≥ λk is large.

If λ is
I large (say ≈ 1), then − ln(1− λ̂i) is large.
I small (say ≈ 0), then − ln(1− λ̂i) ≈ 0.



Test for cointegration: max eigenvalue statistic

I maximum eigenvalue test:

H0 : Rank(Π) = m against HA : Rank(Π) = m + 1

The statistic is
LKmax (m) = −(T − p) ln(1− λ̂m+1)

We start with m = 0 – that is Rank(Π) = 0, there is no cointegration – against
m = 1, that there is one coint rel. Etc.

In case we reject m = k − 1 coint rel, we should have to conclude that there are
m = k coint rel. But this would not fit to the assumption of I(1) vars.

The critical values of both test statistics are nonstandard and are obtained via
Monte Carlo simulation.



Forecasting, summary

The fitted ECM can be used for forecasting ∆xt+τ . The forecasts of xt+τ (τ -step
ahead) are obtained recursively.

x̂t+τ = ∆̂x t+τ + x̂t+τ−1

A summary:
I If all vars are stationary / the VAR is stable, the adequate model is a VAR in

levels.
I If the vars are integrated of order 1 but not cointegrated, the adequate model

is a VAR in first differences (no level components included).
I If the vars are integrated and cointegrated, the adequate model is a

cointegrated VAR. It is estimated in the first differences with the cointegrating
relations (the levels) as explanatory vars.



Bivariate Cointegration



Estimation and testing: Engle and Granger

I Engle-Granger: xt , yt ∼ I(1)

yt = α + x ′tβ + ut

MacKinnon has tabulated critical values for the test of the LS residuals ût

under the null of no cointegration (of a unit root), similar to the augmented
Dickey-Fuller test.

H0 : ut ∼ I(1), no coint HA : ut ∼ I(0), coint

The test distribution depends on the inclusion of an intercept or a trend.
Additional lagged differences may be used.

If u is stationary, x ’s and y are cointegrated.



Phillips-Ouliaris test

I Phillips-Ouliaris: Two residuals are compared.
ût from the Engle-Granger test and ξ̂t from

zt = Πzt−1 + ξt

estimated via LS, where zt = (yt ,x ′t )
′.

ξ̂1,t is stationary, ût only if the vars are cointegrated.
Intuitively the ratio (s2

ξ1
/s2

u) is small under no coint and large under coint (due
to the superconsistency associated with s2

u).

H0 : no coint HA : coint

Two test statisticis P̂u and P̂z are available in ca.po {urca}.

Remark: If zt is a RW, then zt = 1zt−1 + ξt and ξt stationary.
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